* Este blog luta por uma sociedade mais igualitária e justa, pela democratização da informação, pela transparência no exercício do poder público e na defesa de questões sociais e ambientais.
* Aqui temos tolerância com a crítica, mas com o que não temos tolerância é com a mentira.

quinta-feira, 23 de fevereiro de 2012

A maravilha da matemática


Mais um texto do Luis Nassif (2 hoje - mas esse não podia deixar passar), do seu blog


NOTA PRELIMINAR DOS ÍNDIOS BOTOCUDOS - Embora nesse belo ensaio o Nassif relacione as diversas situações ligadas à matemática ao mundo da economia, esses conceitos podem perfeitamente ser aplicados a outras situações existenciais concretas. 

O livro “O Universo NeoLiberal do Desencanto”, do economista José Carlos de Assis e do matemático Francisco Antonio Doria, traz uma história extraordinária, de como três brasileiros – no campo da lógica – ajudaram a desmontar o principal princípio do neoliberalismo: aquele que dizia que em um mercado com livre competição os preços tendem ao equilíbrio.
É mais uma das descobertas do incansável lutador José Carlos de Assis.
As teses do trio – lógico Newton da Costa, matemático Antonio Doria e economista Marcelo Tsuji são um clássico da ciência brasileira que começa a ganhar reconhecimento mundial, mas a história é complexa, porém fascinante, que merece ser detalhada:

  
Newton Costa
Francisco Doria
O primeiro passo é – a partir do livro – reconstituir as etapas da matemática no século 20, sua luta para se tornar uma ciência formal, isto é, com princípios de aplicação geral. E os diversos obstáculos nesse caminho.

O método axiomático na matemática

A matemática sempre se baseou no método axiomático de Euclides.
1      Escolhem-se noções e conceitos primitivos.
2      Utiliza-se uma argumentação lógica.
3      Manipulando os conceitos com a lógica, chega-se aos resultados derivados, os teoremas da geometria.
Foi só a partir do final do século 19 que Giuseppe Peano incorporou o método axiomático à matemática tornando-se, desde então, a técnica mais segura para a geração  de conhecimento matemático.
Em 1908  Ernest Zermelo axiomatizou a teoria dos conjuntos e, a partir daí, todos os resultados conhecidos da matemática. Formou-se a chamada matemática “feijão-com-arroz” usada por engenheiros, economistas, ecólogos e biólogos matemáticos.
E, desde então, no âmbito da alta matemática instaurou-se uma discussão secular: tudo o que enxergamos como verdade matemática pode ser demonstrado?

A formalização da matemática

Com esses avanços do método axiomático, pensava-se que tinha se alcançado na formalização da matemática, tratada como ciência exata capaz de calcular e demonstrar todos os pontos de uma realidade.
Mas aí começaram a surgir os paradoxos, dos quais o mais famoso foi o de Russel:
  • Em uma cidade, existem dois grupos de homens: os que se barbeiam a si mesmos e os que se barbeiam com o barbeiro.  A que grupo pertencem os barbeiros?
Ora, um axioma não pode comportar uma afirmação contraditória em si. De acordo com as deduções da lógica clássica, de uma contradição pode-se deduzir qualquer coisa, acaba o sonho do rigor matemático e o sistema colapsa.
Houve uma penosa luta dos matemáticos para recuperar a matemática da trombada dos paradoxos até definir o que são as verdades matemáticas, o que coube ao matemático David Hilbert (1862-1943).
David Hilber (1862-1943)
Nos anos 20, Hilbert  formulou um programa de investigação dos fundamentos da matemática, definindo o que deveriam ser os valores centrais:
  • Consistência: a matemática não poderia conter contradições.
  • Completude: a matemática deve provar todas suas verdades.
  • Procedimento de decisão: a matemática precisa ter um procedimento, digamos, mecânico permitindo distinguir sentenças matemáticas verdadeiras das falsas.
A partir desses princípios, a ideia era transformar a matemática em uma ciência absoluta com regras definitivas. No Segundo Congresso de Matemática, em Paris, Hilbert propôs os famosos 23 problemas cuja solução desafiaria as gerações seguintes de matemáticos. (http://www.rude2d.kit.net/hilbert.html).
Seus estudos foram fundamentais para o desenvolvimento da ciência da computação.

A pedra no sapato de Hilbert

 
Kurt Gödel (1906-1978)
Mas havia uma pedra em seu caminho quando 1931, o matemático alemão Kurt Gödel (1906-1978), radicado nos Estados Unidos, formula seu teorema da incompletude para a aritmética, inaugurando a era moderna na matemática. Muitos estudiosos sustentam que seu “teorema da incompletude” é a maior realização do gênio humano na lógica, desde Aristóteles. No começo, os achados de Gödel se tornaram secundários no desenvolvimento da matemática do século. A partir dos estudos de dois dos nossos heróis – Doria e Da Costa – os matemáticos descobriram porque a matemática não conseguia explicar uma série enorme de problemas matemáticos.
E aí se entra em uma selva de conceitos de difícil compreensão.
Mas, em síntese, é assim:
  • Suponha um sistema de axiomas, com vários axiomas. Por definição, esse axioma não demonstra fatos falsos, só verdadeiros.
  • Dentre os axiomas, no entanto, há uma sentença formal que, por definição, não pode ser demonstrada.
  • Se não pode ser demonstrada que é verdadeira, também não pode ser demonstrada que é falsa (acho que o matemático se baseou no axioma da Folha com a ficha falsa da Dilma). Logo é uma sentença “indecidível” – isto é, não pode nem ser provada nem reprovada.
  • Se o sistema é consistente – isto é, se consegue provar o que é provável e não consegue o que não é – então, para ser consistente, ele será incompleto.
Pronto, bagunçou totalmente a lógica dos que supunham a matemática uma ciência exata.
Anos depois, o lógico norte-americano Alonzo Church (1903-1995) e o matemático inglês Alan Turing (1912-1954) desenvolveram outro conceito, a indecibilidade.
Ambos demonstraram que há programas de computador insolúveis.
 
Alan Turing (1912-1954)
Turing, aliás, tem uma biografia extraordinária http://www.turing.org.uk/turing/. Durante a Segunda Guerra foi criptógrafo do Exército inglês. Conseguiu quebrar a criptografia da máquina alemã Enigma, até então considerada impossível de ser desvendada. Tornou-se herói de guerra. E lançou as bases para a teoria da programação em computador, quando conseguiu reduzir todas as informações a uma sucessão de 0000 e 1111.
Em 1952 confessou-se homossexual  a um policial que havia batido na porta de sua casa. Preso, com base em uma lei antissodomia (revogada apenas em 1975),  foi condenado a ingerir hormônios femininos para inibir o libido. Os hormônios deformaram seu corpo. Acabou se matando com uma maçã envenenada em 1954.
A teoria da programação nasce em 1936 em um artigo onde Turing analisa em detalhes os procedimentos de cálculos matemáticos e lança o esboço da “máquina de Tuning”, base da computação moderna.
Nesse modelo o procedimento é determinístico – isto é, nos cálculos não há lugar para o acaso.
Muitas vezes ocorrem os “loops infinitos”,  situações em que o computador não consegue encontrar a solução e fica calculando sem parar. Turing já havia provado ser impossível um programa que prevenisse os “crashes” de computador. Explicar a “parada” no programa de computador se tornou um dos bons enigmas para os matemáticos.
Durante bom tempo, até início dos anos 50, os matemáticos procuravam a chave da felicidade: o programa que permitisse antecipar os crashes dos demais programas. Mas em 1936 Turing já havia provado ser impossível.
Mais um revés para os que imaginavam a matemática capaz de explicar (ou computar) todos os fenômenos matemáticos.

O teorema de Rice

Em 1951, outro matemático, Henry Gordon Rice avançou em um teorema considerado “arrasa quarteirão”.
 
Henry Gordon Rice (1920- )
Denominou-se de funções parciais àquelas em que não existe um método geral e eficaz de decisão. Se uma propriedade se aplica a todas as funções parciais, ela é chamada de propriedade trivial. E se a propriedade traz a solução correta para cada algoritmo, ela é chamada de método de decisão eficaz.
Uma propriedade só é eficaz se for aplicada a todas as funções. E essa função não existe.
Levando essas conclusões para outras áreas, é possível constatar que não existe uma vacina universal para vírus de computador, ou para vírus biológico, Todo desenvolvimento de uma vacina biológica será sempre na base de tentativa e erro.
Para desespero dos que acreditavam que a matemática poderia explicar tudo, o teorema de Rice começou a se estender para a maior parte das áreas da matemática.

O equilíbrio de Nash

O inventor oficial da computação, Von Neuman, não conseguia resolver um caso geral em que se analisava uma solução para a soma de um conjunto de decisões.
Quem resolveu foi um dos gênios matemáticos do século, John Nash, personagem principal do filme “Uma mente brilhante”, nascido em 1928 e vivo ainda.

John Nash (1928 - )
Em uma tese de apenas 29 páginas – que lhe rendeu o PhD e o Nobel – ele mostrou que casos de jogos não-colaborativos (como em um mercado) a solução aceitável de cada jogador correspondia ao equilíbrio dos mercados competitivos.
Como explica Dória, em linguagem popular: a situação de equilíbrio é aquela que se melhorar piora.
O “equilíbrio de Nash” mostra uma situação em que há diversos jogadores, cada qual definindo a sua estratégia ótima.  Chega-se a uma situação em que cada jogador não tem como melhorar sua estratégia, em função das estratégias adotadas pelos demais jogadores. Cria-se, então, essa situação do “equilíbrio de Nash”.
O princípio de Nash é: todo jogo não-cooperativo possui um equilíbrio de Nash.
O “equilíbrio de Nash” tornou-se um dos pilares da matemática moderna.

A matemática na economia

O primeiro economista a tentar encontrar o preço de equilíbrio na economia foi Léon Walras (1834-1910). Montou equações que identificam as intersecções da curva da oferta e da demanda, para chegar ao preço ótimo. Depois, montou equações para diversos mercados, concluindo que, dadas as condições ideais para a oferta e para a procura, sempre seria possível encontrar soluções matemáticas.
Mas não apresentou uma solução para o conjunto de operações da economia.
O que abriu espaço para o “equilíbrio dos mercados” foram dois matemáticos – Kenneth Arrow (1921) e Gérard Debreu (1921-2004) que beberam no “equilíbrio de Nash” para formalizar de maneira mais rigorosa os princípios de Walras.
Walras tivera o pioneirismo de formular o estado de um sistema econômico como a solução de um sistema de equações simultâneas, que representavam a demanda de bens pelos consumidores, a oferta pelos produtores e a condição de equilíbrio tal que a oferta igualasse a demanda em cada mercado. Mas, argumentavam eles, Walras não dera nenhuma prova de que a equação proposta (o somatório de todas as equações da economia) tivesse solução.
Só décadas depois, esse dilema – de como juntar em uma mesma solução todas as equações de um universo econômico – passou a ser tratado, com o desenvolvimento da teoria dos jogos, graças à aplicação do “equilíbrio de Nash” à economia. Mostraram que a solução de Nash para o jogo corresponde aos preços de equilíbrio.
Essa acabou sendo a base teórica que legitimou praticamente três décadas de liberalismo exacerbado.

Entra em cena o “outro Nash”

Aí surge em cena o “outro Nash”, Alain Lewis, um gênio matemático, negro, mistura de Harry Belafonte e Denzel Washington, criado nos guetos de Washington, depois estudante em Princenton, onde conquistou o respeito até de referências como Paul Samuelson.
Partiu dele o primeiro grande questionamento à econometria como "teoria eficaz" (isto é, capaz de matematizar todos os fenômenos econômicos).
Em um conjunto de obras, a partir de 1985, Lewis tentou demonstrar que as noções fundamentais da teoria econômica não são "eficazes" - isto é, não explicam todos os fenômenos econômicos - e, portanto, devem ser descartadas. Comprovou sua tese para um número específico de casos.
Em 1991, em Princenton, Lewis ligava de madrugada para trocar ideias com um colega brasileiro, justamente Francisco Antônio Doria. Excepcionalmente brilhante, trato difícil, o primeiro surto de Lewis foi em 1994. Há dez anos nenhum amigo sabe mais dele. Provavelmente internado em alguma clínica.
Sua principal contribuição foi comprovar que em jogos não associativos (aqueles em que há disputas entre os participantes) embora exista o "equilíbrio de Nash" descrevendo cada ação, ganhos e perdas dos competidores, o resultado geral é "não computável" . Ou seja, podem existir soluções particulares mas sem que possam ser reunidas num algoritmo geral.

Aparecem os brasileiros

O objetivo da teoria econômica é identificar as decisões individuais que valem para o coletivo. De nada vale matematizar o resultado de dois agentes individuais se a solução não se aplicar ao conjunto de agentes econômicos.
Havia razões de sobra para Lewis ligar toda noite, impreterivelmente às duas da manhã, para Dória.
Desde os anos 80, Doria e Newton da Costa estudavam soluções para o problema da teoria do caos. Queriam identificar, através de fórmulas, quando um sistema vai desenvolver ou não um comportamento caótico. Esse desafio havia sido proposto em 1983 por Maurice Hirsch, professor de Harvard.
Eram estudos relevantes, especialmente para a área de engenharia. Como saber se a vibração na asa de um avião em voo poderá ficar incontrolável ou não?
Depois, provaram uma versão do teorema de Rice para matemática usual: que usa em economia.
Depois de muitos estudos, ambos elaboraram uma resposta brilhante sobre a teoria do caos: não existe um critério geral para prever o caos, qualquer que seja a definição que se encontre para caos.
Esse conceito transbordou para outros campos computacionáveis. A partir dele foi possível inferir a impossibilidade de se ter um antivírus universal para computador, ou uma vacina universal para doenças.
Num certo dia, no segundo andar do Departamento de Filosofia da USP, Doria foi abordado por um jovem economista, Marcelo Tsuji, que já trabalhava na consultoria de Delfim Neto. Aliás, anos atrás Paulo Yokota já havia me alertado de que o rapaz era gênio. Na época, Delfim encaminhou-o para se doutorar com Doria e da Costa.
Marcelo disse a Doria ter coisas interessantes para lhe relatar. Disse que tinha encontrado uma prova mais geral para o teorema de Lewis utilizando as técnicas desenvolvidas por Doria e Da Costa.
Doria pediu para Marcelo escrever. Depois, Doria e Nilton revisaram o trabalho, todo baseado nas técnicas de lógica de ambos.
Chegou-se ao resultado em 1994. Mas o trabalho com Tsudi só foi publicado em 1998. Revistas de economia matemática recusaram publicar. Conseguiram espaço em revistas de lógica.
O grande desafio do chamado neoliberalismo seria responder às duas questões:
1. Como os agentes fazem escolhas.
2. Como a ordem geral surge a partir das escolhas individuais.
A conclusão final matava definitivamente a ideia de que em mercados competitivos se chegaria naturalmente ao preço de equilíbrio. O trabalho comprovava que o “equilíbrio de Nash” ocorria, com os mercados chegando aos preços de equilíbrio. Mas que era impossível calcular o momento. Logo, toda a teoria não tinha como ser aplicada.

O reconhecimento mundial

O Brasil não tem tradição científica para reconhecer trabalhos na fronteira do conhecimento. Assim, o reconhecimento do trabalho do trio está se dando a partir do exterior.
O livro “Gödel’s Way”, de Doria, Newton e Gregory Chaitin tornou-se um best-seller no campo da matemática, ajudando a conferir a Gödel o reconhecimento histórico que lhe faltou em vida.
 

Gödel's Way

In the 1930s, Kurt Gödel showed that the usual formal mathematical systems cannot prove nor disprove all true mathematical sentences. This notion of incompleteness and a related property—undecideability, formulated by Alan Turing—are often presented as ideas that are only relevant to mathematical logic and have nothing to do with the real world. However, Gödel’s Way proves the contrary.

Gregory Chaitin, Newton da Costa and Francisco Antonio Doria show that incompleteness and undecidability are everywhere, from mathematics and computer science, to physics and mathematically formulated portions of chemistry, biology, ecology, and economics.

Have you ever wondered why we can’t create an antivirus program for computers that doesn’t require constant updates? Or why so much of the software we use has bugs and needs to be upgraded with patch-up subroutines? Fascinatingly, the reasons involve Gödel’s incompleteness theorems. Nor is astronomy immune from the fun, as the authors show. We can formulate a certain measure of a universe, called a metric tensor, so that it is undecidable whether it is a “Big Bang universe”—with a definite origin in time—or a universe without a global time coordinate. (Interestingly, Gödel himself studied universes of the latter type.)


Recentemente, o artigo de ambos com Marcelo Tsudi integrou um handbook inglês de trabalhos clássicos nas áreas de economia e computação.
No próximo mês, Doria – ele próprio um admirador da economia neoclássica – estará ministrando um curso na Áustria, para uma academia defensora da economia ortodoxa, mas que não tem o viés primário dos nossos cabeças de planilha.


...................................



Cometário –  
Em resposta ao comentario meu amigo Elvis, ai em baixo. Explico: O editor do blogger ñ está permitindo que eu poste comentários no meu próprio blog (ñ abre a caixa para que eu escolha um identidade para comentar), e eu ñ sei com resolver isso, por isso vou responder aqui no corpo do post. Qdo isso se resolver coloco lá.

O link da wiki que vc colocou Elvis, trata a questão sob o viés economicista e até ideológico, procurando assombrar uma visão socialista do problema. O que o Nassif  analisa é uma abordagem puramente matemática. No artigo da wiki nem fazem menção a Gödel e hoje qquer investigação fenomenológica sobre  qquer coisa que ñ leve em conta o Teorema de Incompletude de Gödel, resulta incompleto. (Hehehe)


Qto ao fato de que o que produziram os brasileiros se tornar uma piada, precisamos esperar pra ver. Se for, riremos!...

2 comentários:

  1. Ou esses caras aí vão ganhar prêmio Nobel ou vão tornar nosso país (mais) um motivo de piada.

    http://en.wikipedia.org/wiki/Economic_calculation_problem

    ResponderExcluir
  2. Eu estava para publicar um mini-artigo sobre este assunto, usando redes neurais como modelo. Pelo jeito vou ter de escrever rapidinho agora, pra pegar carona no assunto.

    ResponderExcluir